Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Viruses ; 14(7)2022 06 23.
Article in English | MEDLINE | ID: covidwho-1911648

ABSTRACT

New variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continue to emerge, causing surges, breakthrough infections, and devastating losses-underscoring the importance of identifying SARS-CoV-2 antivirals. A simple, accessible human cell culture model permissive to SARS-CoV-2 variants is critical for identifying and assessing antivirals in a high-throughput manner. Although human alveolar A549 cells are a valuable model for studying respiratory virus infections, they lack two essential host factors for SARS-CoV-2 infection: angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2). SARS-CoV-2 uses the ACE2 receptor for viral entry and TMPRSS2 to prime the SARS-CoV-2 spike protein, both of which are negligibly expressed in A549 cells. Here, we report the generation of a suitable human cell line for SARS-CoV-2 studies by transducing human ACE2 and TMPRSS2 into A549 cells. We show that subclones highly expressing ACE2 and TMPRSS2 ("ACE2plus" and the subclone "ACE2plusC3") are susceptible to infection with SARS-CoV-2, including the delta and omicron variants. These subclones express more ACE2 and TMPRSS2 transcripts than existing commercial A549 cells engineered to express ACE2 and TMPRSS2. Additionally, the antiviral drugs EIDD-1931, remdesivir, nirmatrelvir, and nelfinavir strongly inhibit SARS-CoV-2 variants in our infection model. Our data show that ACE2plusC3 cells are highly permissive to SARS-CoV-2 infection and can be used to identify anti-SARS-CoV-2 drugs.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , A549 Cells , Angiotensin-Converting Enzyme 2/genetics , Antiviral Agents/pharmacology , Humans , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2/genetics , Serine Endopeptidases/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
2.
Virology ; 559: 165-172, 2021 07.
Article in English | MEDLINE | ID: covidwho-1198236

ABSTRACT

SARS coronavirus 1 (SARS-CoV-1) causes a respiratory infection that can lead to acute respiratory distress characterized by inflammation and high levels of cytokines in the lung tissue. In this study we constructed a herpes simplex virus 1 replication-defective mutant vector expressing SARS-CoV-1 spike protein as a potential vaccine vector and to probe the effects of spike protein on host cells. The spike protein expressed from this vector is functional in that it localizes to the surface of infected cells and induces fusion of ACE2-expressing cells. In immunized mice, the recombinant vector induced antibodies that bind to spike protein in an ELISA assay and that show neutralizing activity. The spike protein expressed from this vector can induce the expression of cytokines in an ACE2-independent, MyD88-dependent process. These results argue that the SARS-CoV-1 spike protein intrinsically activates signaling pathways that induce cytokines and contribute directly to the inflammatory process of SARS.


Subject(s)
Antibodies, Neutralizing/immunology , Herpesvirus 1, Human/genetics , Immunity, Innate , Severe acute respiratory syndrome-related coronavirus/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Antibodies, Viral/immunology , Cell Fusion , Cell Line , Cytokines/immunology , Genetic Vectors , Humans , Mice , Severe acute respiratory syndrome-related coronavirus/genetics , Signal Transduction , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Vaccines, Virus-Like Particle/immunology , Viral Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL